package frc.robot.subsystems; import com.revrobotics.CANSparkMax; import edu.wpi.first.math.controller.PIDController; import edu.wpi.first.math.controller.SimpleMotorFeedforward; import edu.wpi.first.math.geometry.Pose2d; import edu.wpi.first.math.kinematics.ChassisSpeeds; import edu.wpi.first.math.kinematics.DifferentialDriveKinematics; import edu.wpi.first.math.kinematics.DifferentialDriveOdometry; import edu.wpi.first.math.kinematics.DifferentialDriveWheelSpeeds; import edu.wpi.first.math.proto.Trajectory; import edu.wpi.first.units.Distance; import edu.wpi.first.units.Measure; import edu.wpi.first.units.Velocity; import edu.wpi.first.units.Voltage; import edu.wpi.first.units.MutableMeasure; import edu.wpi.first.wpilibj.Encoder; import edu.wpi.first.wpilibj.RobotController; import edu.wpi.first.wpilibj2.command.Command; import edu.wpi.first.wpilibj2.command.Commands; import edu.wpi.first.wpilibj2.command.SubsystemBase; import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine; import static edu.wpi.first.units.MutableMeasure.mutable; import static edu.wpi.first.units.Units.Volts; import static edu.wpi.first.units.Units.Meters; import static edu.wpi.first.units.Units.MetersPerSecond; import frc.robot.Constants; import frc.robot.util.IMUGyro; public class Drivetrain extends SubsystemBase { private IMUGyro m_gyro = Constants.gyro; private CANSparkMax m_motorL_leader = Constants.motorL_leader; private CANSparkMax m_motorL_follower = Constants.motorL_follower; private CANSparkMax m_motorR_leader = Constants.motorR_leader; private CANSparkMax m_motorR_follower = Constants.motorR_follower; private Encoder m_encoderL = Constants.encoderL; private Encoder m_encoderR = Constants.encoderR; private SimpleMotorFeedforward m_feedforward = new SimpleMotorFeedforward(1.1, 3.16, 0.17); private final PIDController m_pidL = new PIDController(1, 0, 0); private final PIDController m_pidR = new PIDController(1, 0, 0); private DifferentialDriveKinematics m_kinematics = new DifferentialDriveKinematics(Constants.TrackWidth); private DifferentialDriveOdometry m_odometry; // For system identification private final MutableMeasure m_voltage = mutable(Volts.of(0)); private final MutableMeasure m_distance = mutable(Meters.of(0)); private final MutableMeasure> m_velocity = mutable(MetersPerSecond.of(0)); private final SysIdRoutine m_sysIdRoutine = new SysIdRoutine( new SysIdRoutine.Config(), new SysIdRoutine.Mechanism( (Measure volts) -> { m_motorL_leader.set(-volts.in(Volts)); m_motorR_leader.set(-volts.in(Volts)); }, log -> { log.motor("drive-left") .voltage( m_voltage.mut_replace( m_motorL_leader.get() * RobotController.getBatteryVoltage(), Volts) ) .linearPosition(m_distance.mut_replace(m_encoderL.getDistance(), Meters)) .linearVelocity(m_velocity.mut_replace(m_encoderL.getRate(), MetersPerSecond)); log.motor("driver-right") .voltage( m_voltage.mut_replace( m_motorR_leader.get() * RobotController.getBatteryVoltage(), Volts) ) .linearPosition(m_distance.mut_replace(m_encoderR.getDistance(), Meters)) .linearVelocity(m_velocity.mut_replace(m_encoderR.getRate(), MetersPerSecond)); }, this)); public Drivetrain() { m_gyro.reset(); m_gyro.calibrateGyro(10000); m_motorR_follower.follow(m_motorR_leader); m_motorL_follower.follow(m_motorL_leader); m_motorR_leader.setInverted(true); m_encoderL.setReverseDirection(true); m_encoderL.setDistancePerPulse(Math.PI * Constants.WheelDiameter / Constants.EncoderResolution); m_encoderR.setDistancePerPulse(Math.PI * Constants.WheelDiameter / Constants.EncoderResolution); m_encoderL.reset(); m_encoderR.reset(); m_odometry = new DifferentialDriveOdometry( m_gyro.toRotation2d(), Constants.encoderL.getDistance(), Constants.encoderR.getDistance()); } // speed - linear velocity in m/s // rot - angular velocity in rad/s public void arcade(double speed, double rot) { speed(m_kinematics.toWheelSpeeds(new ChassisSpeeds(speed, 0.0, rot))); } // in m/s public void tank(double left, double right) { speed(new DifferentialDriveWheelSpeeds(left, right)); } public void speed(DifferentialDriveWheelSpeeds speeds) { voltage( m_pidL.calculate(m_encoderL.getRate(), speeds.leftMetersPerSecond) + m_feedforward.calculate(speeds.leftMetersPerSecond), m_pidR.calculate(m_encoderR.getRate(), speeds.rightMetersPerSecond) + m_feedforward.calculate(speeds.rightMetersPerSecond) ); } public void voltage(double leftVolts, double rightVolts) { m_motorL_leader.setVoltage(leftVolts); m_motorR_leader.setVoltage(rightVolts); } public Pose2d pose2d() { return m_odometry.getPoseMeters(); } public void reset() { m_gyro.reset(); m_encoderL.reset(); m_encoderR.reset(); m_odometry = new DifferentialDriveOdometry( m_gyro.toRotation2d(), Constants.encoderL.getDistance(), Constants.encoderR.getDistance()); } @Override public void periodic() { m_gyro.update(); m_odometry.update( m_gyro.toRotation2d(), m_encoderL.getDistance(), m_encoderR.getDistance()); } @Override public void simulationPeriodic() { // This method will be called once per scheduler run during simulation } public Command trajectory(Trajectory trajectory) { // TOOD: Implement // return this.runOnce(...) return Commands.none(); } public Command sysIdQausistatic(SysIdRoutine.Direction direction) { return m_sysIdRoutine.quasistatic(direction); } public Command sysIdDynamic(SysIdRoutine.Direction direction) { return m_sysIdRoutine.dynamic(direction); } }