package frc.robot.subsystems; import com.revrobotics.CANSparkMax; import edu.wpi.first.math.controller.PIDController; import edu.wpi.first.math.controller.SimpleMotorFeedforward; import edu.wpi.first.math.geometry.Pose2d; import edu.wpi.first.math.kinematics.ChassisSpeeds; import edu.wpi.first.math.kinematics.DifferentialDriveKinematics; import edu.wpi.first.math.kinematics.DifferentialDriveOdometry; import edu.wpi.first.math.kinematics.DifferentialDriveWheelSpeeds; import edu.wpi.first.math.proto.Trajectory; import edu.wpi.first.wpilibj.Encoder; import edu.wpi.first.wpilibj2.command.Command; import edu.wpi.first.wpilibj2.command.Commands; import edu.wpi.first.wpilibj2.command.RamseteCommand; import edu.wpi.first.wpilibj2.command.SubsystemBase; import frc.robot.Constants; import frc.robot.util.IMUGyro; public class Drivetrain extends SubsystemBase { private IMUGyro m_gyro = Constants.gyro; private CANSparkMax m_motorL_leader = Constants.motorL_leader; private CANSparkMax m_motorL_follower = Constants.motorL_follower; private CANSparkMax m_motorR_leader = Constants.motorR_leader; private CANSparkMax m_motorR_follower = Constants.motorR_follower; private Encoder m_encoderL = Constants.encoderL; private Encoder m_encoderR = Constants.encoderR; private SimpleMotorFeedforward m_feedforward = new SimpleMotorFeedforward(1.1, 3.16, 0.17); private final PIDController m_pidL = new PIDController(1, 0, 0); private final PIDController m_pidR = new PIDController(1, 0, 0); private DifferentialDriveKinematics m_kinematics = new DifferentialDriveKinematics(Constants.TrackWidth); private DifferentialDriveOdometry m_odometry; public Drivetrain() { m_gyro.reset(); m_gyro.calibrateGyro(10000); m_motorR_follower.follow(m_motorR_leader); m_motorL_follower.follow(m_motorL_leader); m_motorR_leader.setInverted(true); m_encoderL.setReverseDirection(true); m_encoderL.setDistancePerPulse(Math.PI * Constants.WheelDiameter / Constants.EncoderResolution); m_encoderR.setDistancePerPulse(Math.PI * Constants.WheelDiameter / Constants.EncoderResolution); m_encoderL.reset(); m_encoderR.reset(); m_odometry = new DifferentialDriveOdometry( m_gyro.toRotation2d(), Constants.encoderL.getDistance(), Constants.encoderR.getDistance()); } // speed - linear velocity in m/s // rot - angular velocity in rad/s public void arcade(double speed, double rot) { speed(m_kinematics.toWheelSpeeds(new ChassisSpeeds(speed, 0.0, rot))); } // in m/s public void tank(double left, double right) { speed(new DifferentialDriveWheelSpeeds(left, right)); } public void speed(DifferentialDriveWheelSpeeds speeds) { voltage( m_pidL.calculate(m_encoderL.getRate(), speeds.leftMetersPerSecond) + m_feedforward.calculate(speeds.leftMetersPerSecond), m_pidR.calculate(m_encoderR.getRate(), speeds.rightMetersPerSecond) + m_feedforward.calculate(speeds.rightMetersPerSecond) ); } public void voltage(double leftVolts, double rightVolts) { m_motorL_leader.setVoltage(leftVolts); m_motorR_leader.setVoltage(rightVolts); } public Pose2d pose2d() { System.out.println("Distance: " + m_encoderL.getDistance()); System.out.println("Distance: " + m_encoderR.getDistance()); return m_odometry.getPoseMeters(); } public void reset() { m_gyro.reset(); m_encoderL.reset(); m_encoderR.reset(); m_odometry = new DifferentialDriveOdometry( m_gyro.toRotation2d(), Constants.encoderL.getDistance(), Constants.encoderR.getDistance()); } @Override public void periodic() { m_gyro.update(); m_odometry.update( m_gyro.toRotation2d(), m_encoderL.getDistance(), m_encoderR.getDistance()); } @Override public void simulationPeriodic() { // This method will be called once per scheduler run during simulation } public Command trajectory(Trajectory trajectory) { // return this.runOnce(...) return Commands.none(); } }