#include "msgpack.h" // read big endian ints #define M_I16(b) (b[0] << 8) | (b[1]) #define M_I32(b) (b[0] << 24) | (b[1] << 16) \ | (b[2] << 8) | (b[3]) #define M_I64(b) (b[0] << 56) | (b[1] << 48) \ | (b[2] << 40) | (b[3] << 32) \ | (b[4] << 24) | (b[5] << 16) \ | (b[6] << 8) | (b[7]) // Todo: add memtable for the lengths, the index is the current index from the array, // the msgpack_t struct has a pointer to such a table // macro making sure there are enough bytes before reading them #define ENOUGH_BYTES(pack, n, on_fail) if((pack)->size < (n)) { on_fail; } #define EB(pack, n) ENOUGH_BYTES(pack, (n)+1, return 0) // byte, type, format, length expr, condition #define BYTE_FORMATS(X, pack) \ X(0xc0, MSGPACK_NIL, FMT_NIL, 0, ;) \ X(0xc1, MSGPACK_UNKNOWN, FMT_UNUSED, 0, ;) \ X(0xc2, MSGPACK_BOOL, FMT_FALSE, 0, ;) \ X(0xc3, MSGPACK_BOOL, FMT_TRUE, 0, ;) \ \ X(0xc4, MSGPACK_RAW, FMT_BIN8, 1+ pack->bin[1], EB(pack, 1)) \ X(0xc5, MSGPACK_RAW, FMT_BIN16, 2+ M_I16(pack->bin+1), EB(pack, 2)) \ X(0xc6, MSGPACK_RAW, FMT_BIN32, 4+ M_I32(pack->bin+1), EB(pack, 4)) \ X(0xc7, MSGPACK_EXT, FMT_EXT8, 1+ pack->bin[1], EB(pack, 1)) \ X(0xc8, MSGPACK_EXT, FMT_EXT16, 2+ M_I16(pack->bin+1), EB(pack, 2)) \ X(0xc9, MSGPACK_EXT, FMT_EXT32, 4+ M_I32(pack->bin+1), EB(pack, 4)) \ \ X(0xca, MSGPACK_FLOAT, FMT_F32, 4, ;) \ X(0xcb, MSGPACK_FLOAT, FMT_F64, 8, ;) \ X(0xcc, MSGPACK_INT, FMT_U8, 1, ;) \ X(0xcd, MSGPACK_INT, FMT_U16, 2, ;) \ X(0xce, MSGPACK_INT, FMT_U32, 4, ;) \ X(0xcf, MSGPACK_INT, FMT_U64, 8, ;) \ X(0xd0, MSGPACK_INT, FMT_I8, 1, ;) \ X(0xd1, MSGPACK_INT, FMT_I16, 2, ;) \ X(0xd2, MSGPACK_INT, FMT_I32, 4, ;) \ X(0xd3, MSGPACK_INT, FMT_I64, 8, ;) \ X(0xd4, MSGPACK_EXT, FMT_FIX_EXT1, 1+ 1, ;) \ X(0xd5, MSGPACK_EXT, FMT_FIX_EXT2, 1+ 2, ;) \ X(0xd6, MSGPACK_EXT, FMT_FIX_EXT4, 1+ 4, ;) \ X(0xd7, MSGPACK_EXT, FMT_FIX_EXT8, 1+ 8, ;) \ X(0xd8, MSGPACK_EXT, FMT_FIX_EXT16, 1+ 16, ;) \ \ X(0xd9, MSGPACK_RAW, FMT_STR8, 1+ pack->bin[1], EB(pack, 1)) \ X(0xda, MSGPACK_RAW, FMT_STR16, 2+ M_I16(pack->bin+1), EB(pack, 2)) \ X(0xdb, MSGPACK_RAW, FMT_STR32, 4+ M_I32(pack->bin+1), EB(pack, 4)) \ \ X(0xdc, MSGPACK_ARRAY, FMT_ARRAY16, 2+ complex_length(pack, FMT_ARRAY16), EB(pack, 2)) \ X(0xdd, MSGPACK_ARRAY, FMT_ARRAY32, 4+ complex_length(pack, FMT_ARRAY32), EB(pack, 4)) \ X(0xde, MSGPACK_MAP, FMT_MAP16, 2+ complex_length(pack, FMT_MAP16), EB(pack, 2)) \ X(0xdf, MSGPACK_MAP, FMT_MAP32, 4+ complex_length(pack, FMT_MAP32), EB(pack, 4)) // just mask these ranges, don't check them // use the logaical and of the ranges as a mask // range low, range high, type, format, length expr #define RANGE_FORMATS(X, pack) \ X(0x00, 0x7f, MSGPACK_INT, FMT_FIX_U, 0) \ X(0x80, 0x8f, MSGPACK_MAP, FMT_FIX_MAP, complex_length(pack, FMT_FIX_MAP)) \ X(0x90, 0x9f, MSGPACK_ARRAY, FMT_FIX_ARRAY, complex_length(pack, FMT_FIX_ARRAY)) \ X(0xa0, 0xbf, MSGPACK_STRING, FMT_FIX_STR, pack[0] & 01F) \ X(0xe0, 0xff, MSGPACK_INT, FMT_FIX_I, 0) #define X_TO_ENUM2(_1, _2, fmt, ...) fmt, #define X_TO_ENUM3(_1, _2, _3, fmt, ...) fmt, enum msgpack_fmt { BYTE_FORMATS(X_TO_ENUM2,;) RANGE_FORMATS(X_TO_ENUM3,;) }; #define X_TO_FMT_TYPE1(_1, type, fmt, ...) [fmt] = type, #define X_TO_FMT_TYPE2(_1, _2, type, fmt, ...) [fmt] = type, static const enum msgpack_type fmt_to_type[] = { BYTE_FORMATS(X_TO_FMT_TYPE1,;) RANGE_FORMATS(X_TO_FMT_TYPE2,;) }; static size_t complex_length(msgpack_t *pack, enum msgpack_fmt fmt); static size_t pack_lenght(msgpack_t pack); static enum msgpack_fmt pack_fmt(msgpack_t pack); #define SUCCESS(type) (type) #define ERROR(type, err, rest) ((rest << 6) | (err << 3) | (type)) #define CHECK_ARGS(type, pack, m) \ do { \ if(!(pack) || !(pack)->bin || (pack)->size == 0) \ return ERROR((type), MSGPACK_ERROR_INVALID_PACK, 0); \ if((pack)->bin[0] == 0xc) \ return ERROR((type), MSGPACK_ERROR_WRONG_TYPE, MSGPACK_NIL);\ if(!(m)) \ return ERROR((type), MSGPACK_ERROR_INVALID_ARGUMENT, 0); \ } while(0) int msgpack_read(msgpack_t *pack, msgpack_allocator_t alloc, void **m_ptr); int msgpack_read_int(msgpack_t *pack, msgpack_int_t *m) { CHECK_ARGS(MSGPACK_INT, pack, m); enum msgpack_fmt fmt = pack_fmt(pack); switch(fmt) { default: return ERROR(MSGPACK_INT, MSGPACK_ERROR_WRONG_TYPE, fmt_to_type[fmt]); } return SUCCESS(MSGPACK_INT); } int msgpack_read_bool(msgpack_t *pack, msgpack_bool_t *m); int msgpack_read_float(msgpack_t *pack, msgpack_int_t *m); int msgpack_read_string(msgpack_t *pack, msgpack_string_t *m); int msgpack_read_bin(msgpack_t *pack, msgpack_bin_t *m); int msgpack_read_array(msgpack_t *pack, msgpack_array_t *m) { CHECK_ARGS(MSGPACK_ARRAY, pack, m); enum msgpack_fmt fmt = pack_fmt(pack); size_t offset = 0; size_t elements = 0; switch(fmt) { case FMT_FIX_ARRAY: offset = 1; elements = pack->bin[0] & 0x0F; break; case FMT_ARRAY16: offset = 3; ENOUGH_BYTES(pack, offset, return 0); elements = M_I16(pack->bin+1); break; case FMT_ARRAY32: offset = 5; ENOUGH_BYTES(pack, offset, return 0); elements = M_I32(pack->bin+1); break; default: return ERROR(MSGPACK_ARRAY, MSGPACK_ERROR_WRONG_TYPE, fmt_to_type[fmt]); } if(m->length < elements) { m->length = elements; return ERROR(MSGPACK_ARRAY, MSGPACK_ERROR_UNSUFFICIENT_CAPACITY, 0); } for(size_t i = 0; i < elements; i++) { msgpack_t new_pack = {pack->bin+offset, size-offset}; size_t len = pack_lenght(&new_pack) + 1; ENOUGH_BYTES(pack, offset + len, return ERROR(MSGPACK_ARRAY, MSGPACK_ERROR_UNEXPECTED_END, 0)); m->members[i].bin = pack->bin + offset; m->members[i].size = len; offset += len; } return SUCCESS(MSGPACK_ARRAY); } int msgpack_read_map(msgpack_t *pack, msgpack_map_t *m); static size_t complex_length(msgpack_t *pack, enum msgpack_fmt fmt) { ENOUGH_BYTES(pack, 1, return 0); size_t offset = 0; size_t elements = 0; switch(fmt) { case FMT_FIX_MAP: case FMT_FIX_ARRAY: offset = 1; elements = pack->bin[0] & 0x0F; break; case FMT_MAP16: case FMT_ARRAY16: offset = 3; ENOUGH_BYTES(pack, offset, return 0); elements = M_I16(pack->bin+1); break; case FMT_MAP32: case FMT_ARRAY32: offset = 5; ENOUGH_BYTES(pack, offset, return 0); elements = M_I32(pack->bin+1); break; } if(fmt_to_type[fmt] == MSGPACK_MAP) elements *= 2; for(size_t i = 0; i < elements; i++) { msgpack_t new_pack = {pack->bin+offset, size-offset}; size_t len = pack_lenght(new_pack) + 1; if(len == 0) return 0; offset += len; ENOUGH_BYTES(pack, offset, return 0); } return offset - 1; } #define WRAP_BYTE_FORMATS(X, pack) \ switch(pack->bin[0]) { BYTE_FORMATS(X, pack) } #define WRAP_RANGE_FORMATS(X, pack) \ char byte = pack->bin[0]; RANGE_FORMATS(X, pack) {} #define BYTE_TO_LENGHT(byte, _type, _fmt, length_expr, cond) \ case byte: cond; return (length_expr) +1; break; #define BYTE_TO_TYPE(byte, type, _fmt _length_expr, _cond) \ case byte: return type; break; #define RANGE_TO_LENGHT(bytel, byteh, _type, _fmt, length_expr) \ if(bytel <= byte && byteh >= pack->bin[0]) { return (length_expr) + 1; } else #define RANGE_TO_TYPE(bytel, byteh, type, _fmt, _length) \ if(bytel <= byte && byteh >= pack->bin[0]) { return type; } else static size_t pack_lenght(msgpack_t pack) { ENOUGH_BYTES(pack, 1, return 0); WRAP_BYTE_FORMATS(BYTE_TO_LENGTH, pack); WRAP_RANGE_FORMATS(RANGE_TO_LENGTH, pack); return 0; } static enum msgpack_fmt pack_fmt(msgpack_t pack) { ENOUGH_BYTES(pack, 1, return 0); WRAP_BYTE_FORMATS(BYTE_TO_TYPE, pack); WRAP_RANGE_FORMATS(RANGE_TO_TYPE, pack); return FMT_UNUSED; }