summaryrefslogtreecommitdiff
path: root/src/main/java/frc/robot/subsystems/Arm.java
blob: 75e8ad2d2e761acff0e9534f83f53ac4d031ef64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
package frc.robot.subsystems;

import org.littletonrobotics.junction.Logger;

import com.revrobotics.CANSparkMax;
import com.revrobotics.RelativeEncoder;
import com.revrobotics.CANSparkLowLevel.MotorType;

import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.controller.ArmFeedforward;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.controller.ProfiledPIDController;
import edu.wpi.first.units.Angle;
import edu.wpi.first.units.Measure;
import edu.wpi.first.units.MutableMeasure;
import edu.wpi.first.units.Velocity;
import edu.wpi.first.units.Voltage;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.PIDCommand;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import frc.robot.Constants;

import static edu.wpi.first.units.MutableMeasure.mutable;
import static edu.wpi.first.units.Units.Volts;
import static edu.wpi.first.units.Units.Radians;
import static edu.wpi.first.units.Units.RadiansPerSecond;
import static edu.wpi.first.units.Units.Seconds;

public class Arm extends SubsystemBase 
{
    // rad
    private double m_setpoint = Constants.arm_initial_position;
    private final CANSparkMax m_armL = new CANSparkMax(Constants.armL_ID, MotorType.kBrushless);
    private final CANSparkMax m_armR = new CANSparkMax(Constants.armR_ID, MotorType.kBrushless);

    private final RelativeEncoder m_encoderL = m_armL.getEncoder();
    private final RelativeEncoder m_encoderR = m_armR.getEncoder();

    private ArmFeedforward m_feedforward = new ArmFeedforward(Constants.ArmkS, Constants.ArmkG, Constants.ArmkV);

    private ProfiledPIDController m_pidL = new ProfiledPIDController(Constants.ArmkP, Constants.ArmkI, Constants.ArmkD, Constants.arm_constraints);
    private ProfiledPIDController m_pidR = new ProfiledPIDController(Constants.ArmkP, Constants.ArmkI, Constants.ArmkD, Constants.arm_constraints);
    
    // SYSID
    private final MutableMeasure<Voltage> m_voltage = mutable(Volts.of(0));
    private final MutableMeasure<Angle> m_angle = mutable(Radians.of(0));
    private final MutableMeasure<Velocity<Angle>> m_velocity = mutable(RadiansPerSecond.of(0));

    private final SysIdRoutine m_sysIdRoutine = new SysIdRoutine(
    new SysIdRoutine.Config(
        Volts.per(Seconds).of(0.5),
        Volts.of(3),
        Seconds.of(10)),
    new SysIdRoutine.Mechanism(
        (Measure<Voltage> volts) -> {
            m_armL.setVoltage(volts.in(Volts));
            m_armR.setVoltage(volts.in(Volts));
        },
        log -> {
            log.motor("arm-left")
                .voltage(
                    m_voltage.mut_replace(
                        m_armL.getAppliedOutput() * m_armL.getBusVoltage(), Volts)
                )
                .angularPosition(m_angle.mut_replace(m_encoderL.getPosition(), Radians))
                .angularVelocity(m_velocity.mut_replace(m_encoderL.getVelocity(), RadiansPerSecond));
            log.motor("arm-right")

                .voltage(
                    m_voltage.mut_replace(
                        m_armR.getAppliedOutput() * m_armR.getBusVoltage(), Volts)
                )
                .angularPosition(m_angle.mut_replace(m_encoderR.getPosition(), Radians))
                .angularVelocity(m_velocity.mut_replace(m_encoderR.getVelocity(), RadiansPerSecond));
            
        }, this));

    public Arm()
    {   
        m_armL.setInverted(false);
        m_armR.setInverted(true);

        m_encoderL.setPositionConversionFactor(2*Math.PI / Constants.ArmGearReduction);
        m_encoderR.setPositionConversionFactor(2*Math.PI / Constants.ArmGearReduction);
        reset();
    }

    // public Arm(double kP, double kI, double kD, double kS, double kG, double kV)
    // {   
    //     this();

    //     m_feedforward = new ArmFeedforward(kS, kG, kV);
    //     m_pidL = new ProfiledPIDController(kP, kI, kD, Constants.arm_constraints);
    //     m_pidR = new ProfiledPIDController(kP, kI, kD, Constants.arm_constraints);
    // }

    public void reset()
    {
        m_setpoint = Constants.arm_initial_position;
        m_encoderL.setPosition(Constants.arm_initial_position);
        m_encoderR.setPosition(Constants.arm_initial_position);

        m_pidL.reset(Constants.arm_initial_position);
        m_pidR.reset(Constants.arm_initial_position);
    }


    public void incrementAngleDegrees(double amount) {
        incrementAngle(amount * Math.PI / 180.0);
    }

    public void incrementAngle(double amount) {
        atAngle(m_setpoint + amount);
    }
    

    // in rad
    public void atAngle(double angle)
    {
        m_setpoint = angle;
        m_pidL.setGoal(m_setpoint);
        m_pidR.setGoal(m_setpoint);

        voltage(
            m_pidL.calculate(m_encoderL.getPosition()),
            m_feedforward.calculate(m_pidL.getSetpoint().position, m_pidL.getSetpoint().velocity),

            m_pidR.calculate(m_encoderR.getPosition()),
            m_feedforward.calculate(m_pidR.getSetpoint().position, m_pidR.getSetpoint().velocity)
        );
    }
    // in deg
    public void atAngleDegrees(double angle) 
    {
        atAngle(angle * Math.PI / 180.0);
    }

    // in rad
    public boolean hasClearedAngle(double angle) 
    {
        if(m_encoderL.getPosition() > angle
        && m_encoderR.getPosition() > angle) 
            return true;

        return false;
    }

    public boolean hasClearedAngleDegree(double angle)
    {
        return hasClearedAngle(angle * Math.PI/180);
    }
    // in rad
    public boolean isAtAngle(double angle) 
    {
        if(Math.abs(m_encoderL.getPosition() - angle) < Constants.ArmEpsilon
        && Math.abs(m_encoderR.getPosition() - angle) < Constants.ArmEpsilon) 
            return true;

        return false;
    }

    public boolean isAtAngleDegree(double angle)
    {
        return isAtAngle(angle * Math.PI/180);
    }

    public void voltage(double leftVoltsPID, double leftVoltsFFW, double rightVoltsPID, double rightVoltsFFW)
    {   
        Logger.recordOutput(getName() + "/leftPID", leftVoltsPID);
        Logger.recordOutput(getName() + "/rightPID", rightVoltsPID);
        Logger.recordOutput(getName() + "/leftFFW", leftVoltsFFW);
        Logger.recordOutput(getName() + "/rightFFW", rightVoltsFFW);

        m_armL.setVoltage(MathUtil.clamp(leftVoltsPID + leftVoltsFFW, -4, 4));
        m_armR.setVoltage(MathUtil.clamp(rightVoltsPID + rightVoltsFFW, -4, 4));
    }

    @Override
    public void periodic() 
    {
        Logger.recordOutput(getName() + "/positionL", m_encoderL.getPosition() * 180/Math.PI);
        Logger.recordOutput(getName() + "/positionR", m_encoderR.getPosition() * 180/Math.PI);
    }

    public Command sysIdQausistatic(SysIdRoutine.Direction direction)
    {
        return m_sysIdRoutine.quasistatic(direction);
    }

    public Command sysIdDynamic(SysIdRoutine.Direction direction)
    {
        return m_sysIdRoutine.dynamic(direction);
    }
}