1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
package frc.robot.subsystems;
import com.revrobotics.CANSparkMax;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.controller.SimpleMotorFeedforward;
import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.math.kinematics.ChassisSpeeds;
import edu.wpi.first.math.kinematics.DifferentialDriveKinematics;
import edu.wpi.first.math.kinematics.DifferentialDriveOdometry;
import edu.wpi.first.math.kinematics.DifferentialDriveWheelSpeeds;
import edu.wpi.first.wpilibj.Encoder;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.Constants;
import frc.robot.util.IMUGyro;
public class Drivetrain extends SubsystemBase
{
private IMUGyro m_gyro = Constants.gyro;
private CANSparkMax m_motorL_leader = Constants.motorL_leader;
private CANSparkMax m_motorL_follower = Constants.motorL_follower;
private CANSparkMax m_motorR_leader = Constants.motorR_leader;
private CANSparkMax m_motorR_follower = Constants.motorR_follower;
private Encoder m_encoderL = Constants.encoderL;
private Encoder m_encoderR = Constants.encoderR;
private SimpleMotorFeedforward m_feedforward = new SimpleMotorFeedforward(1.5, 2.82, 0.47);
private final PIDController m_pidL = new PIDController(1, 0, 0);
private final PIDController m_pidR = new PIDController(1, 0, 0);
private DifferentialDriveKinematics m_kinematics =
new DifferentialDriveKinematics(Constants.TrackWidth);
private DifferentialDriveOdometry m_odometry;
public Drivetrain()
{
m_gyro.reset();
m_gyro.calibrateGyro(10000);
m_motorR_follower.follow(m_motorR_leader);
m_motorL_follower.follow(m_motorL_leader);
m_motorR_leader.setInverted(true);
m_encoderL.setDistancePerPulse(-2 * Math.PI * Constants.WheelRadius / Constants.EncoderResolution);
m_encoderR.setDistancePerPulse(2 * Math.PI * Constants.WheelRadius / Constants.EncoderResolution);
m_encoderL.reset();
m_encoderR.reset();
m_odometry = new DifferentialDriveOdometry(
m_gyro.toRotation2d(),
Constants.encoderL.getDistance(),
Constants.encoderR.getDistance());
}
// speed - linear velocity in m/s
// rot - angular velocity in rad/s
public void arcade(double speed, double rot)
{
speed(m_kinematics.toWheelSpeeds(new ChassisSpeeds(speed, 0.0, rot)));
}
// in m/s
public void tank(double left, double right)
{
speed(new DifferentialDriveWheelSpeeds(left, right));
}
public void speed(DifferentialDriveWheelSpeeds speeds)
{
m_motorL_leader.setVoltage(
m_pidL.calculate(m_encoderL.getRate(), speeds.leftMetersPerSecond)
+ m_feedforward.calculate(speeds.leftMetersPerSecond)
);
m_motorR_leader.setVoltage(
m_pidR.calculate(m_encoderR.getRate(), speeds.rightMetersPerSecond)
+ m_feedforward.calculate(speeds.rightMetersPerSecond)
);
}
public Pose2d pose2d()
{
System.out.println("Distance: "+m_encoderL.getDistance());
System.out.println("Distance: "+m_encoderR.getDistance());
return m_odometry.getPoseMeters();
}
public void reset()
{
m_gyro.reset();
m_encoderL.reset();
m_encoderR.reset();
m_odometry = new DifferentialDriveOdometry(
m_gyro.toRotation2d(),
Constants.encoderL.getDistance(),
Constants.encoderR.getDistance());
}
@Override
public void periodic()
{
m_gyro.update();
m_odometry.update(
m_gyro.toRotation2d(),
m_encoderL.getDistance(),
m_encoderR.getDistance());
}
@Override
public void simulationPeriodic() {
// This method will be called once per scheduler run during simulation
}
}
|