1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
#include <stdio.h>
#include <stdlib.h>
#define ARR_LEN(...) (sizeof(__VA_ARGS__) / sizeof(*(__VA_ARGS__)))
enum symbol {
PLUS = 0,
MINUS,
LPAREN,
RPAREN,
N0, N1,
END_INPUT,
EP, E, T, N,
SYMBOL_COUNT,
};
static inline int is_terminal(enum symbol s) { return s < E; }
static inline int is_nonterminal(enum symbol s) { return s >= E; }
struct production {
enum symbol LHS;
enum symbol *RHS;
size_t nRHS;
};
#define PROD(LHS, _, ...) {LHS, (enum symbol[]){__VA_ARGS__}, sizeof((enum symbol[]){__VA_ARGS__})/sizeof(enum symbol)}
static struct production grammar[] = {
PROD(EP, ->, E, END_INPUT),
PROD(E, -->, E, PLUS, T),
PROD(E, -->, E, MINUS, T),
PROD(E, -->, T),
PROD(T, -->, LPAREN, E, RPAREN),
PROD(T, -->, N),
PROD(N, -->, N0),
PROD(N, -->, N1),
};
void print_grammar()
{
for(size_t i = 0; i < ARR_LEN(grammar); i++) {
printf("%d --> ", grammar[i].LHS);
for(size_t j = 0; j < grammar[i].nRHS; j++)
printf("%d ", grammar[i].RHS[j]);
printf("\n");
}
}
static int follow[SYMBOL_COUNT][SYMBOL_COUNT];
void fill_follow_table();
void print_follow_table()
{
printf(" ");
for(size_t i = 0; i < SYMBOL_COUNT; i++) printf("%2zu ", i);
printf("\n");
for(size_t i = 0; i < SYMBOL_COUNT; i++) {
printf("%2zu ", i);
for(size_t j = 0; j < SYMBOL_COUNT; j++)
printf(" %s ", follow[i][j] ? "x" : " ");
printf("\n");
}
}
struct action {
enum action_type {
ACTION_NOT_SET = 0, ACTION_SHIFT,
ACTION_GOTO, ACTION_REDUCE,
ACTION_ACCEPT
} type;
size_t arg;
};
// THIS IS BAD, DONT DO IT LIKE THAT
#define TABLE_CAP 64
static struct action table[TABLE_CAP][SYMBOL_COUNT];
// DO IT LIKE THAT
// static struct action *(table[SYMBOL_COUNT]);
static size_t states;
int table_insert(size_t state, enum symbol sym, struct action a);
void print_table()
{
printf(" ");
for(size_t sym = 0; sym < SYMBOL_COUNT; sym++) printf("%2zu ", sym);
printf("\n");
char action_to_char[] = {[ACTION_SHIFT] = 's', [ACTION_REDUCE] = 'r', [ACTION_GOTO] = 'g'};
for(size_t i = 0; i < states; i++) {
printf("%2zu ", i);
for(size_t sym = 0; sym < SYMBOL_COUNT; sym++)
if(table[i][sym].type == ACTION_ACCEPT) printf(" a ");
else if(table[i][sym].type) printf("%c%-2zu ", action_to_char[table[i][sym].type], table[i][sym].arg);
else printf(" ");
printf("\n");
}
}
struct item {
size_t prod_idx;
size_t dot;
};
int items_eq(struct item *i1, struct item *i2) { return (i1->dot == i2->dot && i1->prod_idx == i2->prod_idx) ? 1 : 0; }
void print_set(struct item *set, size_t nset)
{
printf("{");
for(size_t i = 0; i < nset; i++)
printf("{%zu, %zu}, ", set[i].prod_idx, set[i].dot);
printf("}\n");
}
#define SEEN_SETS_CAP 64
static struct {
struct item *items;
size_t nitems;
size_t state;
} seen_sets[SEEN_SETS_CAP];
static size_t nseen_sets;
void free_seen_sets() { for(size_t i = 0; i < nseen_sets; i++) free(seen_sets[i].items);}
size_t handle_set(struct item *set, size_t nset);
int insert_set(size_t state, struct item *initial_set, size_t ninitial);
size_t closure(struct item *in_set, size_t nin, struct item *out_set, size_t nout);
void *xcalloc(size_t n, size_t size) { void *addr = calloc(n, size); return addr ? addr : (exit(1), NULL); }
int main(void)
{
fill_follow_table();
handle_set((struct item[]){{0, 0}}, 1);
print_table();
free_seen_sets();
}
size_t handle_set(struct item *set, size_t nset)
{
// 1. is set in seen_sets
for(size_t i = 0; i < nseen_sets; i++) {
if(seen_sets[i].nitems != nset) continue;
int _seen = 0;
for(size_t j = 0; j < nset; j++) {
_seen = 0;
for(size_t k = 0; k < nset; k++)
if(items_eq(&seen_sets[i].items[k], &set[j])) _seen = 1;
if(!_seen) break;
}
if(_seen) return seen_sets[i].state;
}
// 2. add set to seen_sets
if(nseen_sets >= SEEN_SETS_CAP) {
fprintf(stderr, "ERROR: SEEN_SET_CAP exceeded\n");
exit(1);
}
seen_sets[nseen_sets].items = xcalloc(nset, sizeof(*set));
seen_sets[nseen_sets].nitems = nset;
for(size_t i = 0; i < nset; i++)
seen_sets[nseen_sets].items[i] = set[i];
// 3. insert new state
size_t new_state = seen_sets[nseen_sets++].state = states++;
if(new_state >= TABLE_CAP) {
fprintf(stderr, "ERROR: TABLE_CAP exceeded\n");
exit(1);
}
if(insert_set(new_state, set, nset)) {
fprintf(stderr, "ERROR: insert_set failed\n");
exit(1);
}
return new_state;
}
#define CLOSURE_SET_CAP 64
#define GOTO_SET_CAP 32
int insert_set(size_t state, struct item *initial_set, size_t ninitial)
{
struct item closure_set[CLOSURE_SET_CAP];
size_t nclosure = closure(initial_set, ninitial, closure_set, CLOSURE_SET_CAP);
if(nclosure > CLOSURE_SET_CAP) {
fprintf(stderr, "ERROR: CLOSURE_SET_CAP exceeded\n");
return 1;
}
for(size_t sym = 0; sym < SYMBOL_COUNT; sym++) {
struct item goto_set[GOTO_SET_CAP];
size_t ngoto = 0;
for(size_t j = 0; j < nclosure; j++) {
struct production *p = &grammar[closure_set[j].prod_idx];
size_t dot = closure_set[j].dot;
if(dot == p->nRHS) {
if(!follow[p->LHS][sym]) continue;
if(table_insert(state, sym, (struct action){
ACTION_REDUCE, closure_set[j].prod_idx}))
return 1;
continue;
}
if(p->RHS[dot] == sym) {
if(ngoto >= GOTO_SET_CAP) {
fprintf(stderr, "ERROR: GOTO_SET_CAP exceeded\n");
return 1;
}
goto_set[ngoto] = closure_set[j];
goto_set[ngoto++].dot++;
}
}
if(ngoto == 0) continue;
if(sym == END_INPUT) {
if(table_insert(state, sym, (struct action){ACTION_ACCEPT, 0}))
return 1;
continue;
}
size_t new_state = handle_set(goto_set, ngoto);
if(table_insert(state, sym, (struct action){
is_terminal(sym) ? ACTION_SHIFT : ACTION_GOTO,
new_state})) return 1;
}
return 0;
}
size_t closure(struct item *in_set, size_t nin, struct item *out_set, size_t nout_max)
{
size_t nout = nin;
if(nout > nout_max) return nout;
for(size_t i = 0; i < nin; i++) out_set[i] = in_set[i];
int *is_in_closure = xcalloc(ARR_LEN(grammar), sizeof(int));
for(size_t i = 0; i < nout; i++)
{
struct production *p = &grammar[out_set[i].prod_idx];
if(out_set[i].dot == p->nRHS) continue;
enum symbol sym = p->RHS[out_set[i].dot];
for(size_t j = 0; j < ARR_LEN(grammar); j++)
if(grammar[j].LHS == sym) {
if(is_in_closure[j]) continue;
is_in_closure[j] = 1;
if(nout++ >= nout_max) goto cleanup;
out_set[nout-1] = (struct item){j, 0};
}
}
cleanup:
free(is_in_closure);
return nout;
}
void fill_follow_table()
{
for(size_t i = 0; i < ARR_LEN(grammar); i++) {
struct production *p = &grammar[i];
for(size_t j = 1; j < p->nRHS; j++)
follow[p->RHS[j-1]][p->RHS[j]] = 1;
}
#define set(e) if((e) != 1) changed = (e) = 1
int changed;
do {
changed = 0;
for(size_t i = 0; i < ARR_LEN(grammar); i++)
for(size_t sym = 0; sym < SYMBOL_COUNT; sym++) {
struct production *p = &grammar[i];
if(follow[p->LHS][sym])
set(follow[p->RHS[p->nRHS-1]][sym]);
if(follow[sym][p->LHS])
set(follow[sym][p->RHS[0]]);
}
} while(changed);
}
int table_insert(size_t state, enum symbol sym, struct action a)
{
if(table[state][sym].type != ACTION_NOT_SET) {
fprintf(stderr, "TABLE COLLISION on state '%zu' sym '%d'\n", state, sym);
fprintf(stderr, "\t{%d %zu} vs {%d %zu}",
table[state][sym].type, table[state][sym].arg,
a.type, a.arg);
return 1;
}
table[state][sym] = a;
return 0;
}
|