1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
package frc.robot.subsystems;
import com.revrobotics.CANSparkMax;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.controller.SimpleMotorFeedforward;
import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.math.kinematics.ChassisSpeeds;
import edu.wpi.first.math.kinematics.DifferentialDriveKinematics;
import edu.wpi.first.math.kinematics.DifferentialDriveOdometry;
import edu.wpi.first.math.kinematics.DifferentialDriveWheelSpeeds;
import edu.wpi.first.math.proto.Trajectory;
import edu.wpi.first.units.Distance;
import edu.wpi.first.units.Measure;
import edu.wpi.first.units.Velocity;
import edu.wpi.first.units.Voltage;
import edu.wpi.first.units.MutableMeasure;
import edu.wpi.first.wpilibj.Encoder;
import edu.wpi.first.wpilibj.RobotController;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.Commands;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import static edu.wpi.first.units.MutableMeasure.mutable;
import static edu.wpi.first.units.Units.Volts;
import static edu.wpi.first.units.Units.Meters;
import static edu.wpi.first.units.Units.MetersPerSecond;
import frc.robot.Constants;
import frc.robot.util.IMUGyro;
public class Drivetrain extends SubsystemBase
{
private IMUGyro m_gyro = Constants.gyro;
private CANSparkMax m_motorL_leader = Constants.motorL_leader;
private CANSparkMax m_motorL_follower = Constants.motorL_follower;
private CANSparkMax m_motorR_leader = Constants.motorR_leader;
private CANSparkMax m_motorR_follower = Constants.motorR_follower;
private Encoder m_encoderL = Constants.encoderL;
private Encoder m_encoderR = Constants.encoderR;
private SimpleMotorFeedforward m_feedforward = new SimpleMotorFeedforward(1.1, 3.16, 0.17);
private final PIDController m_pidL = new PIDController(1, 0, 0);
private final PIDController m_pidR = new PIDController(1, 0, 0);
private DifferentialDriveKinematics m_kinematics =
new DifferentialDriveKinematics(Constants.TrackWidth);
private DifferentialDriveOdometry m_odometry;
// For system identification
private final MutableMeasure<Voltage> m_voltage = mutable(Volts.of(0));
private final MutableMeasure<Distance> m_distance = mutable(Meters.of(0));
private final MutableMeasure<Velocity<Distance>> m_velocity = mutable(MetersPerSecond.of(0));
private final SysIdRoutine m_sysIdRoutine = new SysIdRoutine(
new SysIdRoutine.Config(),
new SysIdRoutine.Mechanism(
(Measure<Voltage> volts) -> {
m_motorL_leader.set(-volts.in(Volts));
m_motorR_leader.set(-volts.in(Volts));
},
log -> {
log.motor("drive-left")
.voltage(
m_voltage.mut_replace(
m_motorL_leader.get() * RobotController.getBatteryVoltage(), Volts)
)
.linearPosition(m_distance.mut_replace(m_encoderL.getDistance(), Meters))
.linearVelocity(m_velocity.mut_replace(m_encoderL.getRate(), MetersPerSecond));
log.motor("driver-right")
.voltage(
m_voltage.mut_replace(
m_motorR_leader.get() * RobotController.getBatteryVoltage(), Volts)
)
.linearPosition(m_distance.mut_replace(m_encoderR.getDistance(), Meters))
.linearVelocity(m_velocity.mut_replace(m_encoderR.getRate(), MetersPerSecond));
}, this));
public Drivetrain()
{
m_gyro.reset();
m_gyro.calibrateGyro(10000);
m_motorR_follower.follow(m_motorR_leader);
m_motorL_follower.follow(m_motorL_leader);
m_motorR_leader.setInverted(true);
m_encoderL.setReverseDirection(true);
m_encoderL.setDistancePerPulse(Math.PI * Constants.WheelDiameter / Constants.EncoderResolution);
m_encoderR.setDistancePerPulse(Math.PI * Constants.WheelDiameter / Constants.EncoderResolution);
m_encoderL.reset();
m_encoderR.reset();
m_odometry = new DifferentialDriveOdometry(
m_gyro.toRotation2d(),
Constants.encoderL.getDistance(),
Constants.encoderR.getDistance());
}
// speed - linear velocity in m/s
// rot - angular velocity in rad/s
public void arcade(double speed, double rot)
{
speed(m_kinematics.toWheelSpeeds(new ChassisSpeeds(speed, 0.0, rot)));
}
// in m/s
public void tank(double left, double right)
{
speed(new DifferentialDriveWheelSpeeds(left, right));
}
public void speed(DifferentialDriveWheelSpeeds speeds)
{
voltage(
m_pidL.calculate(m_encoderL.getRate(), speeds.leftMetersPerSecond)
+ m_feedforward.calculate(speeds.leftMetersPerSecond),
m_pidR.calculate(m_encoderR.getRate(), speeds.rightMetersPerSecond)
+ m_feedforward.calculate(speeds.rightMetersPerSecond)
);
}
public void voltage(double leftVolts, double rightVolts)
{
m_motorL_leader.setVoltage(leftVolts);
m_motorR_leader.setVoltage(rightVolts);
}
public Pose2d pose2d()
{
return m_odometry.getPoseMeters();
}
public void reset()
{
m_gyro.reset();
m_encoderL.reset();
m_encoderR.reset();
m_odometry = new DifferentialDriveOdometry(
m_gyro.toRotation2d(),
Constants.encoderL.getDistance(),
Constants.encoderR.getDistance());
}
@Override
public void periodic()
{
m_gyro.update();
m_odometry.update(
m_gyro.toRotation2d(),
m_encoderL.getDistance(),
m_encoderR.getDistance());
}
@Override
public void simulationPeriodic() {
// This method will be called once per scheduler run during simulation
}
public Command trajectory(Trajectory trajectory)
{
// TOOD: Implement
// return this.runOnce(...)
return Commands.none();
}
public Command sysIdQausistatic(SysIdRoutine.Direction direction)
{
return m_sysIdRoutine.quasistatic(direction);
}
public Command sysIdDynamic(SysIdRoutine.Direction direction)
{
return m_sysIdRoutine.dynamic(direction);
}
}
|